Cambridge International AS & A Level

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

* 1 7 9 3 6 9 4 5 4

FURTHER MATHEMATICS

9231/23

Paper 2 Further Pure Mathematics 2

May/June 2023

2 hours

You must answer on the question paper.

You will need: List of formulae (MF19)

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do **not** use an erasable pen or correction fluid.
- Do not write on any bar codes.
- If additional space is needed, you should use the lined page at the end of this booklet; the question number or numbers must be clearly shown.
- You should use a calculator where appropriate.
- You must show all necessary working clearly; no marks will be given for unsupported answers from a calculator.
- Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place for angles in degrees, unless a different level of accuracy is specified in the question.

INFORMATION

- The total mark for this paper is 75.
- The number of marks for each question or part question is shown in brackets [].

This document has 16 pages. Any blank pages are indicated.

2

BLANK PAGE

a)	Find the Maclaurin series for $\sin^{-1} x$ up to and including the term in x^3 .	[5]
		••••••
		•••••
		••••••
		•••••
		•••••
))	Deduce an approximation to $\int_0^{\frac{1}{5}} \frac{1}{\sqrt{1-u^2}} du$, giving your answer as a fraction.	[1]
		•••••
		•••••
		•••••

2 The variables x and y are related by the differential equation

$$6\frac{d^2x}{dt^2} + 5\frac{dx}{dt} + x = t^2 + 10t + 13.$$

•••••											
••••••	•	••••••	••••••	••••••	•••••	• • • • • • • • • • • • • • • • • • • •		• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	••••••	•••••
		•••••	•••••			•••••			•••••		
•••••		••••••	••••••	• • • • • • • • • • • • • • • • • • • •	•••••	•••••		••••••	• • • • • • • • • • • • • • • • • • • •	••••••	••••••
		•••••	•••••			•••••			•••••		•••••
									•••••		
						•••••					
						•••••					
						•••••					
•••••	•	••••••	••••••		••••••	•••••		•	• • • • • • • • • • • • • • • • • • • •	••••••	••••••
•••••	••••••	•••••	•••••		•••••	• • • • • • • • • • • • • • • • • • • •		• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	•••••	•••••
		•••••	•••••		•••••	•••••			•••••	•••••	•••••
	•••••		•••••		•••••	•••••			• • • • • • • • • • • • • • • • • • • •	•••••	•••••
						•••••					
						•••••			•••••		
			•••••			•••••					
•••••	•••••••	••••••	••••••	· • • • • • • • • • • • • • • • • • • •	••••••	•••••		• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	••••••	•••••
		••••••	•••••	, 		•••••			•••••	•••••	•••••
•••••	••••••	••••••	••••••		•••••			• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	•••••	•••••
State a	an approx	timate so	lution fo	r large p	ositive	values	of <i>t</i> .				

	$\cot^4 \theta = \frac{\cos 4\theta + a \cos 2\theta}{\cos 4\theta - a \cos 2\theta}$	+b
where a and b are integers to be de	etermined.	[7]

4	The curve	C has	equation

Show that, at the point $(-4, 3)$ on	$C, \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{17}.$	[3

Tina the value	e of $\frac{d^2y}{dx^2}$ at the po	omi (1, 3).				
						• • • • • • • • • • • • • • • • • • • •
••••••		•••••				• • • • • • • • • • • • • • • • • • • •
	•••••		•••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •
		•••••				
		•••••				• • • • • • • • • • • • • • • • • • • •
		•••••		••••••	••••••	•
		•••••	•••••			• • • • • • • • • • • • • • • • • • • •
	•••••	•••••	•••••••••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •
		•••••		••••••	•••••	
						•••••

)	Starting from the definitions of cosh and sinh in terms of exponentials, prove that	
	$2\cosh^2 x = \cosh 2x + 1.$	[3]
	Find the solution of the differential equation	
	Find the solution of the differential equation $\frac{dy}{dx} + 2y \tanh x = 1$	
		[8]
	$\frac{\mathrm{d}y}{\mathrm{d}x} + 2y \tanh x = 1$	[8]
	$\frac{\mathrm{d}y}{\mathrm{d}x} + 2y \tanh x = 1$	[8]
	$\frac{\mathrm{d}y}{\mathrm{d}x} + 2y \tanh x = 1$	[8]
	$\frac{\mathrm{d}y}{\mathrm{d}x} + 2y \tanh x = 1$	[8]
	$\frac{\mathrm{d}y}{\mathrm{d}x} + 2y \tanh x = 1$	[8]
	$\frac{dy}{dx} + 2y \tanh x = 1$ for which $y = 1$ when $x = 0$. Give your answer in the form $y = f(x)$.	
	$\frac{\mathrm{d}y}{\mathrm{d}x} + 2y \tanh x = 1$	
	$\frac{dy}{dx} + 2y \tanh x = 1$ for which $y = 1$ when $x = 0$. Give your answer in the form $y = f(x)$.	
	$\frac{dy}{dx} + 2y \tanh x = 1$ for which $y = 1$ when $x = 0$. Give your answer in the form $y = f(x)$.	
	$\frac{dy}{dx} + 2y \tanh x = 1$ for which $y = 1$ when $x = 0$. Give your answer in the form $y = f(x)$.	
)	$\frac{dy}{dx} + 2y \tanh x = 1$ for which $y = 1$ when $x = 0$. Give your answer in the form $y = f(x)$.	

••••••••••		•••••	•		
•••••	••••••	•••••	•••••	•••••	
		•••••	•••••	•••••	
••••••	••••••	•••••	•••••	•••••	
••••••	•••••••	•••••	•	•	
		•••••	•••••		
		•••••	•••••	•••••	
			••••		
•••••	••••••	•••••	•••••	•••••	
••••••	••••••	•••••	•••••	•••••	

6

The diagram shows the curve with equation $y = (1-x)^2$ for $0 \le x \le 1$, together with a set of n rectangles of width $\frac{1}{n}$.

(a) By considering the sum of the areas of these rectangles, show that $\int_0^1 (1-x)^2 dx < U_n$, where

i	$U_n = \frac{2n^2 + 3n + 1}{6n^2}.$	[5]

(b)	Use a similar method to find, in terms of n , a lower bound L_n for $\int_0^1 (1-x)^2 dx$.	Į]
		••
		••
		••
		••
		••
		••
(c)	Show that $\lim_{n\to\infty} (U_n - L_n) = 0$.	<u>?]</u>
		••
		••
		••
		••

The	integral I_n , where n is an integer, is defined by $I_n = \int_0^{\frac{4}{3}} (1+x^2)^{\frac{1}{2}n} dx$.
	Find the exact value of I_{-1} giving your answer in the form $\ln a$, where a is an integer to be determined. [2]
(b)	By considering $\frac{d}{dx}(x(1+x^2)^{\frac{1}{2}n})$, or otherwise, show that
	$(n+1)I_n = nI_{n-2} + \frac{4}{3} \left(\frac{5}{3}\right)^n. $ [5]

Use the substitution $u = 2x$ to show that $s = \frac{1}{2}I_1$ and find the exact value of s.	
2 1	
	••••••
	••••••

8 The matrix **A** is given by

$$\mathbf{A} = \begin{pmatrix} a & -6a & 2a+2 \\ 0 & 1-a & 0 \\ 0 & 2-a & -1 \end{pmatrix}$$

where a is a constant with $a \neq 0$ and $a \neq 1$.

(a)	Show that the equation $\mathbf{A} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$ has a unique solution and interpret this situation geometrically	ly.
		[3]
		•••
		•••
		•••
		•••
		•••
		•••
(b)	Show that the eigenvalues of A are a , $1-a$ and -1 .	[2]
		•••
		•••
		•••

Use the characteristic equation of A to find \mathbf{A}^4 in terms of A and a .	

16

Additional page

If you use the following page to complete the answer to any question, the question number must be clearly shown.

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of Cambridge Assessment. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which is a department of the University of Cambridge.